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We present the results of Monte Carlo simulations of hard spheroids of revolution of different elongations.
Both prolate and oblate shapes are examined. A systematic study of the bridge function b�1,2�, and direct
comparison with the indirect correlation function ��1,2�=h�1,2�−c�1,2� at densities spanning the isotropic
fluid range, allow us to evaluate the accuracy of various proposed closure relations for integral equations.
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I. INTRODUCTION

Theory and simulation have revealed a great deal about
the thermodynamic properties and fluid structure of homoge-
neous fluids of spherical particles �1,2�. Simulation has been
used to calculate the total and direct correlation functions
�3�, the cavity function �4,5�, and the bridge function �6–8�.
On the theoretical side, integral equation theory �IET� is now
capable of making some very accurate predictions. The
Percus-Yevick �PY� and hypernetted chain �HNC� theories
have now been extended, for example, by mixing closures so
as to obtain identical virial and compressibility equations of
state �9,10�. An alternative approach has been to incorporate
approximate forms for the bridge function in the HNC clo-
sure �11–13�.

The equilibrium properties of isotropic fluids of non-
spherical particles are less well characterized. The PY and
HNC equations have been solved for axially symmetric par-
ticles �e.g., hard spheroids, hard spherocylinders, and trun-
cated hard spheres� and the general conclusion is that the
HNC is superior to the PY method for significantly aspheri-
cal particles, but that there is still a substantial discrepancy
between theory and simulation, especially at high density
�14–17�. Singh et al. �18� applied a nonspherical version of
the Rogers-Young method of mixing PY and HNC closures,
obtaining results for spheroids in good agreement with simu-
lation. A series of papers �19–23� has investigated the use of
a modified Verlet-bridge closure, reporting improved results.
With the exception of the pioneering study of Lomba et al.
�24� on hard diatomic molecules, there have been no direct
determinations of the bridge function for nonspherical sys-
tems. Consequently, our understanding of these systems is
still not as complete as in the case of spherical particles, and
a systematic study of pair structure as a function of molecu-
lar shape and density is sorely needed.

In a previous paper �25� we presented methodologies for
calculating the direct correlation and cavity and bridge func-

tions for isotropic fluids of axially symmetric particles using
advanced the Monte Carlo �MC� techniques. These methods
were used to calculate the molecular correlation functions for
a fluid of hard spheroids with major axis of length A and
minor axis of length B, with elongation e=A /B=3, over a
range of densities in the isotropic phase. Comparisons were
made with IET, and with a virial expansion of the bridge
function. In the present paper we greatly extend this study, to
encompass elongations e= 3

2 ,2 ,3 ,5 and their inverses. We
concentrate on the bridge function itself, and the information
that can be obtained about possible closure relations.

The paper is organized as follows. Section II defines the
bridge function and relates it to the integral equations that
arise from applying closure relations to the Ornstein-Zernike
equation. Section III contains a brief description of the com-
putational methods used in this work. Results are presented
in Sec. IV and conclusions in Sec. V.

II. CLOSURE RELATIONS AND SPHERICAL
HARMONIC EXPANSIONS

The Ornstein-Zernike equation for a homogeneous fluid
of axially symmetric molecules is �1,2�

h�1,2� = c�1,2� +
�

4�
� d3 c�1,3�h�3,2� . �1�

Here h�1,2�=g�1,2�−1 is the total correlation function,
g�1,2� the pair distribution function, c�1,2� the direct corre-
lation function, and � the number density. We have abbrevi-
ated �ri ,ui�→ i, where ri denotes the center-of-mass position,
and ui a unit vector along the symmetry axis, of particle i.

To determine h�1,2� and c�1,2�, Eq. �1� is usually supple-
mented by an approximate closure relation. The exact clo-
sure relation can be written as follows �1�:

y�1,2� � g�1,2�exp�V�1,2�/kBT� = exp���1,2� + b�1,2�� ,

�2�

where y�1,2� is the cavity or background correlation func-
tion, V�1,2� is the intermolecular pair potential, T is the
temperature, kB is Boltzmann’s constant, ��1,2�=h�1,2�
−c�1,2�, and b�1,2� is the bridge function. Equation �2� may
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be regarded as a definition of b�1,2�. The approximate clo-
sure relations may be regarded as approximations to the un-
known b�1,2�. In particular, the best-known closures �1,2�
are as follows.

Hypernetted chain. bHNC�1,2�=0.
Percus-Yevick. bPY�1,2�=−��1,2�+ln�1+��1,2��.
A set of more sophisticated closure relations are based on

the form introduced by Verlet �26�,

b�1,2� = −
1
2��1,2�2

1 + ���1,2�
. �3�

Different choices of the parameter � in Eq. �3� correspond to
the following closures.

Verlet bridge (VB). bVB�1,2�, Eq. �3� with �=0.8 �26�.
Modified Verlet bridge (MV). bMV�1,2�, Eq. �3� with �

=1.1− �2/��� �19,23�.
Henderson-Chan-Degrève (HCD). bHCD�1,2�, Eq. �3�

with

� =
17

120�
+ 0.515 − 0.2210� , �4�

where � is the packing fraction �27,28�. The above closures
were all originally proposed for hard-sphere systems, but are
easily extended to nonspherical hard particles; for hard sphe-
roids �= �� /6��AB2.

The numerical solution of the integral equation and MC
calculations of b�1,2� are based upon the expansion of two-
particle functions in a basis set of rotational invariants �2,29�

F�1,2� = �
mn�

Fmn��r��mn��u1,u2, r̂� , �5�

�mn��u1,u2, r̂�

= 4��
��	

�m n �

� � 	
	Ym��u1�Yn��u2�
 4�

2� + 1
Y�	�r̂� ,

�6�

where r is the intermolecular distance. All the vectors are
expressed in an arbitrary “laboratory frame:” r̂ is a unit vec-
tor pointing along the line of centers, and u1 ,u2 are the ori-
entations of the molecules. Ym
�u� are the spherical har-
monic functions, and � m n �

� � 	
� is the standard 3j symbol.

Some quantities of interest are easier to compute in a
system of coordinates whose z axis lies along the intermo-
lecular vector: the “molecular frame.” With vectors ũ re-
ferred to this frame, the expansion has the form

F�1,2� = 4��
mn


Fmn
�r�Ym
�ũ1�Yn
̄�ũ2� , �7�

where 
̄=−
. The two sets of coefficients are connected
through the 
 transform and its inverse:

Fmn
�r� = �
�
�m n �


 
̄ 0
	Fmn��r� , �8a�

Fmn��r� = �2� + 1��



�m n �


 
̄ 0
	Fmn
�r� . �8b�

III. COMPUTATIONAL METHODS

The simulations, the techniques used to invert the data
and extract the bridge functions, and the method used to
solve the integral equations subject to given closure rela-
tions, were described in detail in Ref. �25�. Therefore, only a
brief summary will be given here.

Standard constant-NVT Monte Carlo simulation methods
were employed. Spherical harmonic expansion coefficients
of the pair distribution function g�1,2� and hence h�1,2�
were computed, using system sizes of N=2048 molecules,
and run lengths �after equilibration� of 5�105 MC sweeps
�each sweep is on average one attempted translation and one
attempted rotation per molecule�. From h�1,2�, the direct
correlation function c�1,2� was obtained by inverting the
Ornstein-Zernike equation �1�. Spherical harmonic expan-
sions were truncated at mmax=nmax=8 and the grid spacing
was �r=0.01B. The cavity correlation function y�1,2� was
calculated using a smaller system size, N=512 molecules.
Special sampling techniques were used �25�, and the bridge
function b�1,2� was obtained by inverting the closure rela-
tion �2�.

To solve the integral equations we have used the general
approach of Refs. �15,30�, calculating the solution by expan-
sion in rotational invariants of the correlation functions, Eq.
�5�; the expansions are truncated at mmax=nmax=8 and all
nonzero components consistent with this truncation are kept.
The integral equation was discretized on a grid in steps of
�r=0.01B for the prolate shapes, and �r=0.005B for the ob-
late shapes. The resulting system of nonlinear equations is
solved using the Newton iterative solver presented in Ref.
�31�.

Results are presented here for the eight elongations e
=5,3 ,2 , 3

2 , 2
3 , 1

2 , 1
3 , 1

5 , at reduced densities �*=�AB2 /
2
=0.1,0.2,0.3,0.4,0.5,0.6, except that the highest two densi-
ties are omitted for e=5, 1

5 . �In these units, �*=1 corresponds
to the density of regular close packing based on the fcc or
hcp structure; in passing we note that regular crystal struc-
tures of higher density exist �32,33�.� Simulations were also
performed at e=1.1 and 1/1.1 for comparison with the re-
sults of hard spheres, and for �*=0.7 at elongations e=2, 1

2 ,
but these are not reported in detail here.

For convenience later, we list in Table I eight relative

TABLE I. Orientations of molecules relative to the center-center
vector, used in the Duh-Haymet plots.

Angle
�deg�

Orientation

e s t x a b c d


 0 0 0 90 0 60 120 180

�1 0 90 0 90 45 45 45 45

�2 0 90 90 90 45 45 45 45
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FIG. 1. �Color online� Spherical harmonic coefficients of the
bridge function in the molecular frame, bmn
�r�, determined by
Monte Carlo simulation, for prolate spheroids of elongation e
=A /B=5. Densities: �*=0.1 �circles, red�, 0.2 �squares, green�, 0.3
�diamonds, blue�, 0.4 �triangles, magenta�. The solid lines are the
corresponding results bmn


HCD�r� of solving the Ornstein-Zernike
equation with the Henderson-Chan-Degrève �27,28� modified
Verlet-bridge closure.
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FIG. 2. �Color online� Spherical harmonic coefficients of the
bridge function in the molecular frame, bmn
�r�, determined by
Monte Carlo and integral equation theory using the modified HCD
Verlet-bridge closure, for oblate spheroids of elongation e=A /B
=1/5. Notation as for Fig. 1.
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FIG. 3. �Color online� Spherical harmonic coefficients of the
bridge function in the molecular frame, bmn
�r�, determined by
Monte Carlo simulation, for prolate spheroids of elongation e
=A /B=3. Densities: �*=0.1 �circles, red�, 0.2 �squares, green�, 0.3
�diamonds, blue�, 0.4 �triangles, cyan�, 0.5 �inverted triangles, ma-
genta�, 0.6 �crosses, orange�. The solid lines are the corresponding
results bmn


HCD�r� of solving the Ornstein-Zernike equation with the
HCD modified Verlet-bridge closure.
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FIG. 4. �Color online� Spherical harmonic coefficients of the
bridge function in the molecular frame, bmn
�r�, determined by
Monte Carlo and integral equation theory using the HCD modified
Verlet-bridge closure, for oblate spheroids of elongation e=A /B
=1/3. Notation as for Fig. 3.
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FIG. 5. �Color online� Spherical harmonic coefficients of the
bridge function in the molecular frame, bmn
�r�, determined by
Monte Carlo and integral equation theory using the HCD modified
Verlet-bridge closure, for prolate spheroids of elongation e=A /B
=2. Notation as for Fig. 3.
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FIG. 6. �Color online� Spherical harmonic coefficients of the
bridge function in the molecular frame, bmn
�r�, determined by
Monte Carlo and integral equation theory using the HCD modified
Verlet-bridge closure, for oblate spheroids of elongation e=A /B
=1/2. Notation as for Fig. 3.
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FIG. 7. �Color online� Spherical harmonic coefficients of the
bridge function in the molecular frame, bmn
�r�, determined by
Monte Carlo and integral equation theory using the HCD modified
Verlet-bridge closure, for prolate spheroids of elongation e=A /B
=3/2. Notation as for Fig. 3.
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FIG. 8. �Color online� Spherical harmonic coefficients of the
bridge function in the molecular frame, bmn
�r�, determined by
Monte Carlo and integral equation theory using the HCD modified
Verlet-bridge closure, for oblate spheroids of elongation e=A /B
=2/3. Notation as for Fig. 3.
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arrangements of pairs of linear molecules. For convenience
they are referred to by a single letter. The relative orientation
angles are defined by cos �1=u1 · r̂, cos �2=u2 · r̂, and cos 

= p̂1 · p̂2 where p̂i is the unit vector in the direction pi=ui
� r̂. Orientation “e” corresponds to an end-to-end arrange-
ment; “s” is side by side; “t” is a T shape; “x” is a crossed
arrangement where the molecular axes and the center-center
vector are all mutually perpendicular. The remaining orien-
tations “a”–“d” are less symmetrical: both molecules are
tilted at 45° relative to the center-center vector, and four
different twist angles 
 are chosen.

IV. RESULTS

A. Angular components of the bridge function

In Figs. 1–8 we present several spherical harmonic com-
ponents of the bridge function bmn
�r�, computed in the mo-
lecular frame from the Monte Carlo simulations, for both
prolate and oblate spheroids. The results are compared with
the predictions of integral equation theory using the HCD
modified Verlet-bridge closure �27,28�, which we find to be
the best approximation to the bridge function. For the most
elongated, prolate, spheroids with e=5 �see Fig. 1�, this clo-
sure gives a reasonably accurate representation of the bridge
function only at the lower densities �*�0.3. For �*=0.4,
which is not far below the isotropic-nematic phase transition,
the various components of b�1,2� are very strongly overes-
timated by the theory. It should be noted that the higher-
order components, exemplified here by b040, are harder to
determine accurately in the simulation: the feature near r
=0 in the simulation data may be an artifact of the inversion
procedure. For less anisometric shapes, this artifact is much
less pronounced.

For the flattest, most oblate, spheroids with e= 1
5 �see Fig.

2�, reasonable agreement between the HCD closure and the
simulation results is once more obtained for �*�0.3, al-
though significant deviations are seen for the b000 component
even at �*=0.3. The closure significantly overestimates the
variation in all components for �*=0.4. Once more, there is a
qualitative difference between simulation and theory for the
b040 component, particularly at short distances.

For the case of spheroids with e=3, 1
3 ,2 , 1

2 �see Figs.
3–6�, the HCD closure gives a reasonably accurate represen-
tation of the bridge function components up to reduced den-
sity �*=0.5; at �*=0.6, significant differences appear. The
agreement becomes progressively better with increasing
sphericity, and is very good for the most nearly spherical
cases e=3/2 and e=2/3 �Figs. 7 and 8�.

B. The closure relation

A key aim of this study is to examine the accuracy of the
various closure relations, expressed directly as the equation
linking b�1,2� with ��1,2�. A convenient way to present this
is the Duh-Haymet plot �34�: for a wide selection of separa-
tions and orientations, the values of b�1,2� and ��1,2� are
simply plotted against each other. Results are presented here
by reduced density �packing fraction�. The prolate and oblate
cases are presented separately for clarity, but otherwise the

results for various elongations, all the mutual orientations
listed in Table I, and a regular sampling of all the center-
center distances, are superimposed on one another. This al-
lows a test of the possible universality of the various closure
relations given in Sec. II: the Duh-Haymet plots are pre-
dicted to be identical for equal packing fractions. As will
become apparent, although the general form of the plots is
the same, there is a clear dependence on packing fraction,
which is best represented by the HCD closure.

At the lowest reduced density �*=0.1 �see Fig. 9� the
HCD closure is very accurate, while the others are not as
good. The first term in the expression for � in Eq. �4� was
chosen to give a very good approximation for the low-
density hard-sphere bridge function, and this term dictates
the low-density behavior of the closure relation.

At �*=0.2 �see Fig. 10� the HCD closure is still very
accurate. There is a small systematic spread in the MC re-
sults: for prolate shapes in particular they lie slightly above
the HCD line.

At �*=0.3 �see Fig. 11� the HCD closure accurately rep-
resents all the MC results, except those for the cases e
=5, 1

5 which lie somewhat above the HCD line. As the den-
sity increases, the MV closure starts to approach the HCD
line from below, but at �*=0.3, this and the other closures
are clearly worse.

At �*=0.4 �see Fig. 12� the MC results do not collapse so
well onto a single curve. The most prolate case e=5 gives a
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FIG. 9. �Color online� Duh-Haymet plot of bridge function
b�1,2� versus indirect correlation function ��1,2�=h�1,2�−c�1,2�,
determined by Monte Carlo simulation, at reduced density �*=0.1.
The results of all elongations, eight mutual orientations, and a regu-
lar sample of all center-center separations, are superimposed. Ori-
entations defined in Table I: e, s, t, x, a, b, c, d �red, green, blue,
cyan, magenta, orange, violet, yellow, respectively�. Prolate elonga-
tions are shown in the upper graph, oblate elongations in the lower
graph: e=5, 1 /5 �triangles�; 3, 1 /3 �diamonds�; 2, 1 /2 �squares�;
3 /2, 2 /3 �circles�. Theoretical closure relations are indicated by
lines: Henderson-Chan-Degrève �27,28�, solid line; modified Verlet
�19,23�, dashed line; Verlet bridge �26�, dot-dashed line; Percus-
Yevick, double-dot-dashed line.
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set of data points lying significantly above the HCD line; for
e=3, the results lie slightly above the line. For the other
elongations, the HCD closure and the MV closure, which
almost coincides with it, are very accurate. For e= 1

5 there is
considerable variation in the curves for different orientations.

The cases e=5, 1
5 are not studied at higher densities, due

to the onset of the nematic phase. At �*=0.5 �see Fig. 13�
both the cases e=3 and 1/3 lie somewhat above the HCD
and VB closures, which are almost coincident here. The
other elongations fall quite accurately onto the HCD line. At
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FIG. 10. �Color online� Duh-Haymet plot of bridge function
b�1,2� versus indirect correlation function ��1,2�=h�1,2�−c�1,2�,
determined by Monte Carlo simulation, at reduced density �*=0.2.
The results of all elongations �prolate above, oblate below�, eight
mutual orientations, and a regular sample of all center-center sepa-
rations are superimposed. Theoretical closure relations are indicated
by lines. Notation as for Fig. 9.
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FIG. 11. �Color online� Duh-Haymet plot of bridge function
b�1,2� versus indirect correlation function ��1,2�=h�1,2�−c�1,2�,
determined by Monte Carlo simulation, at reduced density �*=0.3.
The results of all elongations �prolate above, oblate below�, eight
mutual orientations, and a regular sample of all center-center sepa-
rations are superimposed. Theoretical closure relations are indicated
by lines. Notation as for Fig. 9.
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FIG. 12. �Color online� Duh-Haymet plot of bridge function
b�1,2� versus indirect correlation function ��1,2�=h�1,2�−c�1,2�,
determined by Monte Carlo simulation, at reduced density �*=0.4.
The results of all elongations �prolate above, oblate below�, eight
mutual orientations, and a regular sample of all center-center sepa-
rations are superimposed. Theoretical closure relations are indicated
by lines. Notation as for Fig. 9.
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FIG. 13. �Color online� Duh-Haymet plot of bridge function
b�1,2� versus indirect correlation function ��1,2�=h�1,2�−c�1,2�,
determined by Monte Carlo simulation, at reduced density �*=0.5.
The results of all elongations except e=5,1 /5 �prolate above, ob-
late below�, eight mutual orientations, and a regular sample of all
center-center separations, are superimposed. Theoretical closure re-
lations are indicated by lines. Notation as for Fig. 9.
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this density, the MV line lies above all the others.
At the highest density reported here, �*=0.6 �see Fig. 14�

there is a little more scatter in the MC results. For elonga-
tions e=2,3 /2 ,2 /3, these are accurately represented by the
HCD closure. The same is true for e=1/2 and 1/3 at most
orientations, but the end-to-end case “e” �better called face to
face for these oblate spheroids� lies well off this line. The
most prolate elongation e=3 conforms reasonably well to the
HCD prediction, but there is some scatter. All the elongations
have some orientations and positions for which ��1,2� takes
small negative values, the case e=3 being the most extreme.
At this density both MV and VB results lie above the HCD
line.

We conclude the discussion with a warning about the ac-
curacy of different closure relations in predicting other struc-
tural properties. In Fig. 15 one can see that the gap between
the compressibility factor values computed via the virial or
the compressibility equations �for the precise definitions see,
e.g., Ref. �23�� are significantly reduced and the agreement
with MC data is improved when the HCD Verlet bridge func-
tion is used in the closure, instead of the simple HNC equa-
tion. However Fig. 15 shows that the same does not apply to
the value of the Kerr constant, which measures local orien-
tational order �see Ref. �35��. Neither HNC nor HCD clo-
sures are in particularly good agreement with the MC data. It
remains an open challenge to extend the Verlet bridge func-
tion to a form that preserves the small inconsistency for the
equation of state and improves the values of the Kerr con-
stant.

V. CONCLUSIONS

Our results show that the closure relations of modified
Verlet bridge type are significantly better than both HNC and
PY closures of the Ornstein-Zernike equation, for this class
of models. Taking the HCD closure as an example, the an-
gular components of the bridge function from Monte Carlo
simulation are reasonably well represented up to reduced
densities of �*=0.5, although there are some discrepancies
between the MC and IET data for the higher-order expansion
coefficients in the region r→0. In investigating the possible
“universality” of the closure relation, we find that MC results
for the same reduced density or packing fraction do indeed
lie very close to the same curve in a Duh-Haymet plot, for a
variety of elongations, separations, and relative orientations.
This holds, again, up to densities of about �*=0.5, beyond
which there is a little more scatter, and orientation depen-
dence, although some deviations are seen at lower densities
for more anisometric molecules. However, the results also
show that this curve is mildly density dependent, and that the
HCD closure is the most accurate of those we have tested at
all densities.
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FIG. 14. �Color online� Duh-Haymet plot of bridge function
b�1,2� versus indirect correlation function ��1,2�=h�1,2�−c�1,2�,
determined by Monte Carlo simulation, at reduced density �*=0.6.
The results of all elongations except e=5,1 /5 �prolate above, ob-
late below�, eight mutual orientations, and a regular sample of all
center-center separations, are superimposed. Theoretical closure re-
lations are indicated by lines. Notation as for Fig. 9.
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